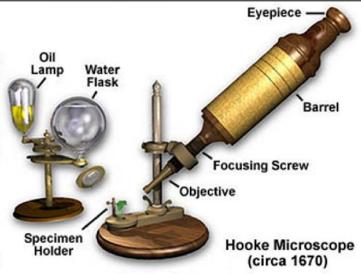


John Corlett for the NGLS Accelerator Systems Team

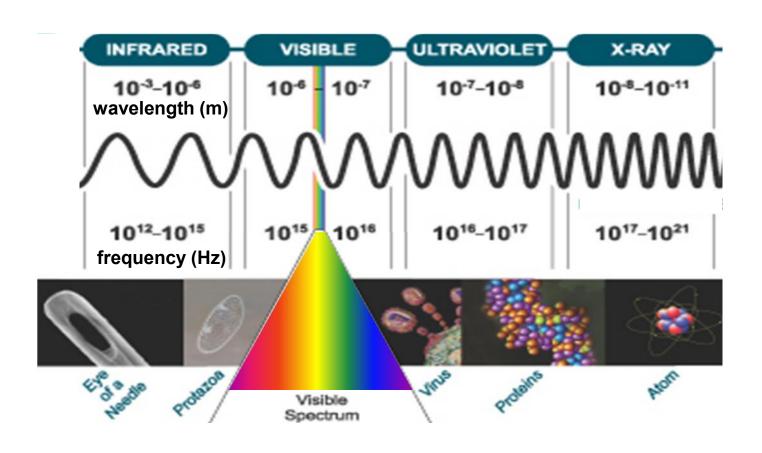
March 15, 2012

What is the NGLS? Why do we need it – now?


NGLS will be the world's fastest.

- High repetition rate X-ray laser with ultrat
- Significant impact on the DOE mission
 - Urgent energy science: photosynthesis
- Unique machine that will enable global leadership in critical areas
- Recent X-ray laser breakthroughs (LCLS/FLASH/FERMI@elettra) point the way...
 - Ten year time horizon, NGLS is not an incremental advance

Worldwide, no source – operating today or under construction – will be able to provide all the capabilities of NGLS



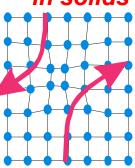
Light – Electromagnetic Spectrum

Ultrafast Phenomena

1 fs is to 1 second as 1¢ is to the U.S. national debt (~\$14 Trillion)

1 second

10⁻³ sec (milli)


Time

Stop watch

Fast shutters

electron interactions

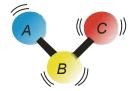
10⁻¹⁵ sec (femto)

10⁻¹⁸ sec (atto)

10⁻⁹ sec (nano)

10⁻¹² sec (pico)

10⁻⁶ sec


(micro)

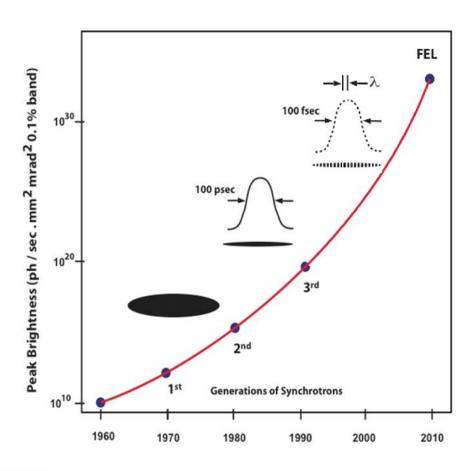
reactions (explosion)

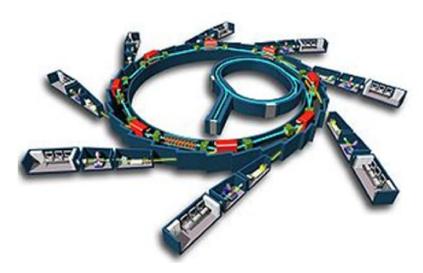
Macroscopic chemical

High speed electronics

Molecular vibrations

Electron motion in atomic levels

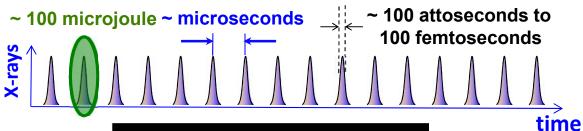


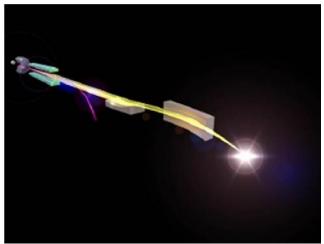


Three generations of light sources have driven X-ray science:

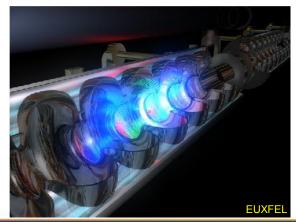
NGLS next generation light source

Next generation sources will be intense, ultrafast, coherent


Synchrotron radiation from accelerated electron beams

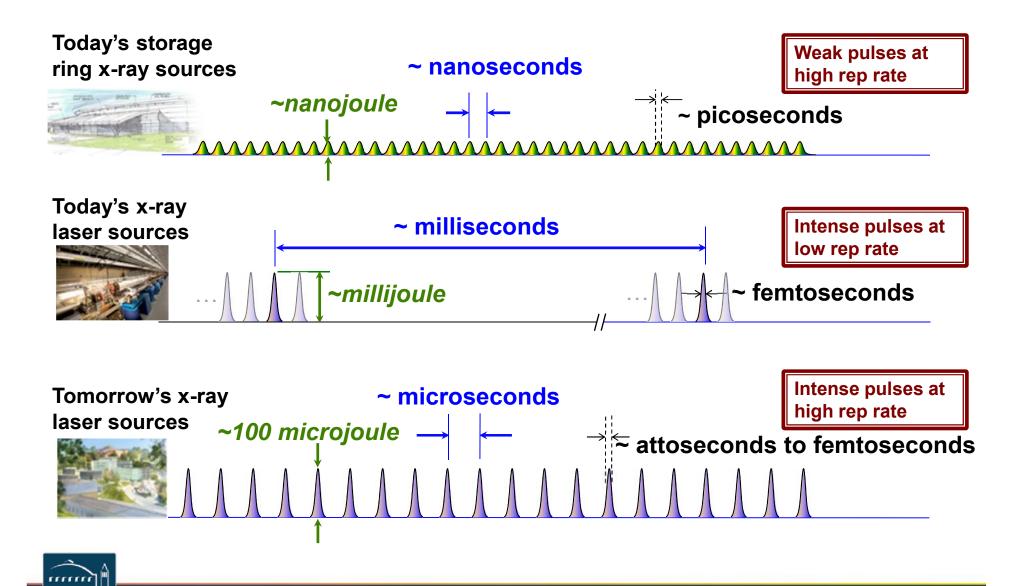


What is the NGLS? - Technologies



Goal: beams of intense, ultrafast, coherent X-ray pulses at high repetition-rate

Free electron lasers (FELs)provide intense, ultrafast, coherent, X-ray puises


A superconducting accelerator and high rep-rate injector provides high brightness electron beam

Comparison with existing light sources

NGLS Capabilities

- Up to 10⁶ pulses per second
- Average coherent power up to ~100 W

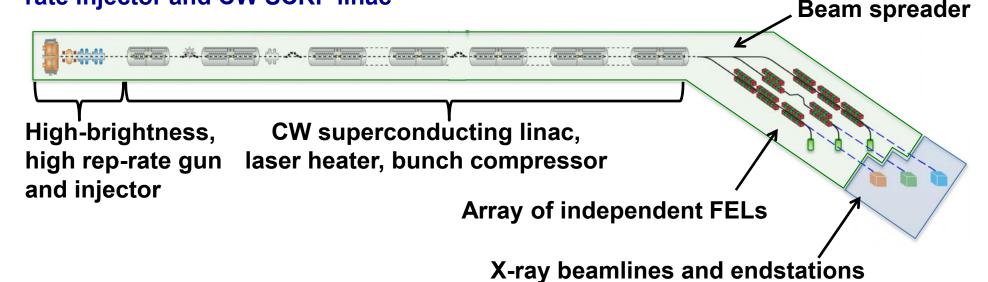
Spatially and temporally coherent X-rays (seeded)

- Ultrashort pulses from 250 as 250 fs
- Narrow energy bandwidth to 50 meV

Tunable X-rays

- Adjustable photon energy from 280 eV 1.2 keV
 - higher energies in the 3rd and 5th harmonics
- Polarization control
- Moderate to high flux with 10⁸ 10¹² photons/pulse

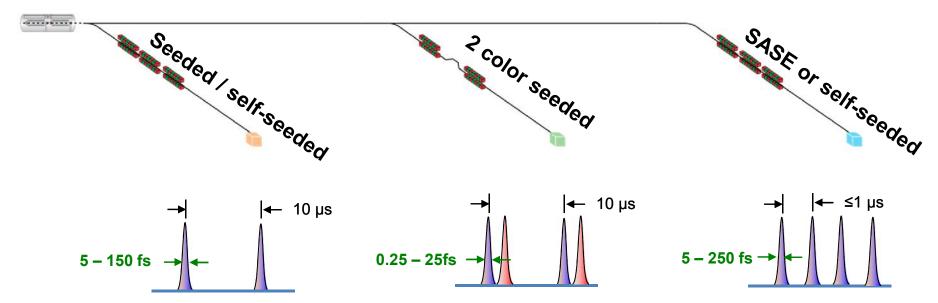
Expandable


- Capability
- Capacity

NGLS Approach

High average power electron beam distributed to an array of FELs from high reprate injector and CW SCRF linac

NGLS offers significant advances over current capabilities:


- More photons per unit bandwidth
- More photons per second
- Shorter pulses
- Controlled trade-off between time and energy resolution

Three initial FEL beamlines to span the science case

High resolution ~Time-bandwidth limited $10^{11} - 10^{12}$ ph/pulse $10^{-3} - 5 \times 10^{-5}$ bandwidth

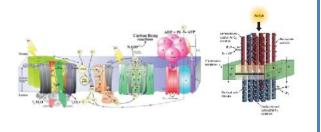
High-resolution spectroscopy
Diffract-and-Destroy
(with harmonics)

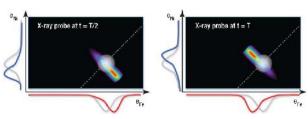
Ultra-fast Sub-fs pulses 2 color 108 ph/pulse

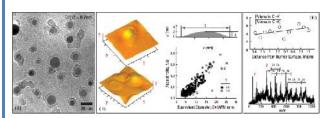
Multidimensional spectroscopy

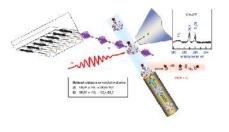
Highest rep rate High flux 10¹¹ - 10¹² ph/pulse 100 W

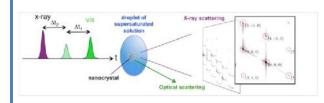
Diffract-and-Destroy (at highest rate) Photon correlation spectroscopy

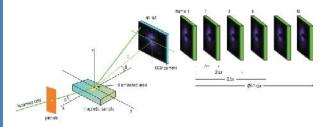


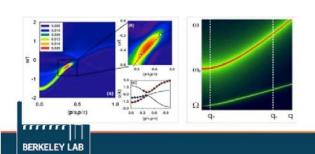

Broad Range of Energy Science Uniquely Enabled by NGLS

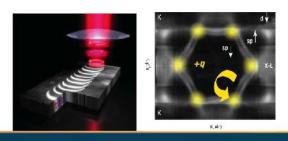

Natural and Artificial Photosynthesis

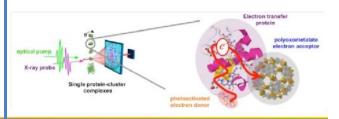

Fundamental Charge Dynamics


Advanced Combustion Science


Catalysis

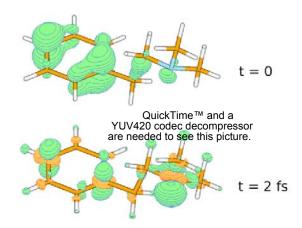

Nanoscale Materials Nucleation


Dynamic Nanoscale Heterogeneity


Quantum Materials

Nanoscale Spin and Magnetization

Bioimaging: Structure-to-Function



NGLS - What Does it Do?

- High repetition rate X-ray laser with ultrafast pulses
- NGLS will probe the motion of molecules, atoms, and electrons
- On their natural time scales femtoseconds (fs) and faster....
- With unprecedented resolution
 - nanometers (molecules) to Angstroms (atoms)
- With chemical sensitivity Carbon, Oxygen, Nitrogen.....

Time to do Experiments - Photosynthesis

Required	10 ¹⁷	photons
Damage Limit	10 ⁸	ph/pulse

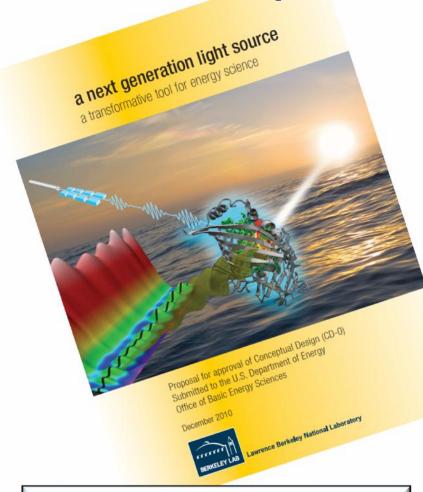
10⁵

Hz

Max Rep. Rate

Sample Replacement: **10**⁵ Hz

Time to do experiment:


Photons Required / (Photons/Pulse x Rep. Rate)

	Source (intrinsic)				
	Max. ph/pulse	Max. Rep. rate [Hz]	Time to do exp	eriment	Time resolution
Storage Ring	10 ⁵	5x10 ⁸	10 ¹⁷ /10 ⁵ /10 ⁵	100 days	100 ps
Pulsed FEL	10 ¹⁰	10 ²	10 ¹⁷ /10 ⁸ /10 ²	100 days	~fs
NGLS	10 ⁹	10 ⁶	10 ¹⁷ /10 ⁸ /10 ⁵	3 hours	~fs

NGLS CD-0 Proposal

- Submitted December 2010
- More than 150 contributors
- · Representing >40 national and international research institutions

Scientific and Technical Contributors

Paul Adams 14 Musa Ahmed 14 Caroline Ajo-Franklin 14 A.P. Alivisatos 14 Elke Arenholz 14 Brian Austin 23 William Bachalo 4 Sam Bader 2 Jill Banfield 14 Ken Baptista 14 Ali Belkacem 14 Alexis Bell 14 James Berger 30 Robert Bergmann 25 Nora Berrah 41 Jean-Yves Bigot 12 Hendrik Bluhm 14 Mike Bogan 25 Axel Brunger 26 Phillip Bucksbaum 25 John Byrd 14 Jamie Cate 30 ndrea Cavalleri 7	l	Scientifi	C
Paul Adams 14 Musa Ahmed 14 Caroline Ajo-Franklin 14 A.P. Alivisatos 14 Elke Arenholz 14 Brian Austin 23 William Bachalo 4 Sam Bader 2 Jill Banfield 14 Ken Baptiste 14 Ali Belkacem 14 Alexis Bell 14 James Berger 30 Robert Bergman 30 Uwe Bergmann 25 Nora Berrah 41 Jean-Yves Bigot 12 Hendrik Bluhm 14 Mike Bogan 25 Axel Brunger 26 Phillip Bucksbaum 25 John Byrd 14 Jamie Cate 30 ndrea Cavalleri 7	l	Peter Abbamonte ³⁷	A
Musa Ahmed 14 Caroline Ajo-Franklin 14 A.P. Alivisatos 14 Elike Arenholz 14 Brian Austin 23 William Bachalo 4 Sam Bader 2 Jill Banfield 14 Ken Baptiste 14 Ali Belkacem 14 Alexis Bell 14 James Berger 30 Robert Bergman 30 Uwe Bergmann 25 Nora Berrah 41 Jean-Yves Bigot 12 Hendrik Bluhm 14 Mike Bogan 25 Axel Brunger 26 Phillip Bucksbaum 25 John Byrd 14 Jamie Cate 30 ndrea Cavalleri 7	l		L
Caroline Ajo-Franklin 14 A.P. Alivisatos 14 Elke Arenholz 14 Brian Austin 23 William Bachalo 4 Sam Bader 2 Jill Banfield 14 Ken Baptista 14 Ali Belkacem 14 Alexis Bell 14 James Berger 30 Robert Bergman 30 Uwe Bergmann 25 Nora Berrah 41 Jean-Yves Bigot 12 Hendrik Bluhm 14 Mike Bogan 25 Axel Brunger 26 Phillip Bucksbaum 25 John Byrd 14 Jamie Cate 30 ndrea Cavalleri 7	l		Y
A.P. Alivisatos 14 Elke Arenholz 14 Brian Austin 23 William Bachalo 4 Sam Bader 2 Jill Banfield 14 Ken Baptiste 14 Ali Belkacem 14 Alexis Bell 14 James Berger 30 Robert Bergman 30 Uwe Bergmann 25 Nora Berrah 41 Jean-Yves Bigot 12 Hendrik Bluhm 14 Mike Bogan 25 Axel Brunger 26 Phillip Bucksbaum 25 John Byrd 14 Jamie Cate 30 ndrea Cavalleri 7	l	Caroline Ajo-Franklin 14	٨
Elke Arenholz 14 Brian Austin 23 William Bachalo 4 Sam Bader 2 Jill Banfield 14 Ken Baptiste 14 Ali Belkacem 14 Alexis Bell 14 James Berger 30 Robert Bergman 30 Uwe Bergmann 25 Nora Berrah 41 Jean-Yves Bigot 12 Hendrik Bluhm 14 Mike Bogan 25 Axel Brunger 26 Phillip Bucksbaum 25 John Byrd 14 Jamie Cate 30 ndrea Cavalleri 7	l	A.P. Alivisatos 14	Y
Brian Austin ²³ William Bachalo ⁴ Sam Bader ² Jill Banfield ¹⁴ Ken Baptiste ¹⁴ Ali Belkacem ¹⁴ Alexis Bell ¹⁴ James Berger ³⁰ Robert Bergman ³⁰ Uwe Bergmann ²⁵ Nora Berrah ⁴¹ Jean-Yves Bigot ¹² Hendrik Bluhm ¹⁴ Mike Bogan ²⁵ Axel Brunger ²⁶ Phillip Bucksbaum ²⁵ John Byrd ¹⁴ Jamie Cate ³⁰ ndrea Cavalleri ⁷	l		C
Sam Bader ² Jill Banfield ¹⁴ Ken Baptiste ¹⁴ Ali Belkacem ¹⁴ Alexis Bell ¹⁴ James Berger ³⁰ Robert Bergman ³⁰ Uwe Bergmann ²⁵ Nora Berrah ⁴¹ Jean-Yves Bigot ¹² Hendrik Bluhm ¹⁴ Mike Bogan ²⁵ Axel Brunger ²⁶ Phillip Bucksbaum ²⁵ John Byrd ¹⁴ Jamie Cate ³⁰ ndrea Cavalleri ⁷	l		P
Jill Banfield ¹⁴ Ken Baptiste ¹⁴ Ali Belkacem ¹⁴ Alexis Bell ¹⁴ James Berger ³⁰ Robert Bergman ³⁰ Uwe Bergmann ²⁵ Nora Berrah ⁴¹ Jean-Yves Bigot ¹² Hendrik Bluhm ¹⁴ Mike Bogan ²⁵ Axel Brunger ²⁶ Phillip Bucksbaum ²⁵ John Byrd ¹⁴ Jamie Cate ³⁰ ndrea Cavalleri ⁷	l	William Bachalo4	J
Ken Baptiste ¹⁴ Ali Belkacem ¹⁴ Alexis Bell ¹⁴ James Berger ³⁰ Robert Bergman ³⁰ Uwe Bergmann ²⁵ Nora Berrah ⁴¹ Jean-Yves Bigot ¹² Hendrik Bluhm ¹⁴ Mike Bogan ²⁵ Axel Brunger ²⁶ Phillip Bucksbaum ²⁵ John Byrd ¹⁴ Jamie Cate ³⁰ ndrea Cavalleri ⁷	l	Sam Bader ²	T
Ali Belkacem ¹⁴ Alexis Bell ¹⁴ James Berger ³⁰ Robert Bergman ³⁰ Uwe Bergmann ²⁵ Nora Berrah ⁴¹ Jean-Yves Bigot ¹² Hendrik Bluhm ¹⁴ Mike Bogan ²⁵ Axel Brunger ²⁶ Phillip Bucksbaum ²⁵ John Byrd ¹⁴ Jamie Cate ³⁰ ndrea Cavalleri ⁷	l	Jill Banfield 14	P
Ali Belkacem ¹⁴ Alexis Bell ¹⁴ James Berger ³⁰ Robert Bergman ³⁰ Uwe Bergmann ²⁵ Nora Berrah ⁴¹ Jean-Yves Bigot ¹² Hendrik Bluhm ¹⁴ Mike Bogan ²⁵ Axel Brunger ²⁶ Phillip Bucksbaum ²⁵ John Byrd ¹⁴ Jamie Cate ³⁰ ndrea Cavalleri ⁷	l	Ken Baptiste 14	0
Alexis Bell 14 James Berger ³⁰ Robert Bergman ³⁰ Uwe Bergmann ²⁵ Nora Berrah ⁴¹ Jean-Yves Bigot ¹² Hendrik Bluhm ¹⁴ Mike Bogan ²⁵ Axel Brunger ²⁶ Phillip Bucksbaum ²⁵ John Byrd ¹⁴ Jamie Cate ³⁰ ndrea Cavalleri ⁷	l	Ali Belkacem ¹⁴	Т
Robert Bergman ³⁰ Uwe Bergmann ²⁵ Nora Berrah ⁴¹ Jean-Yves Bigot ¹² Hendrik Bluhm ¹⁴ Mike Bogan ²⁵ Axel Brunger ²⁶ Phillip Bucksbaum ²⁵ John Byrd ¹⁴ Jamie Cate ³⁰ ndrea Cavalleri ⁷	l	Alexis Bell ¹⁴	J
Robert Bergman ³⁰ Uwe Bergmann ²⁵ Nora Berrah ⁴¹ Jean-Yves Bigot ¹² Hendrik Bluhm ¹⁴ Mike Bogan ²⁵ Axel Brunger ²⁶ Phillip Bucksbaum ²⁵ John Byrd ¹⁴ Jamie Cate ³⁰ ndrea Cavalleri ⁷	l	James Berger ³⁰	L
Uwe Bergmann ²⁵ Nora Berrah ⁴¹ Jean-Yves Bigot ¹² Hendrik Bluhm ¹⁴ Mike Bogan ²⁵ Axel Brunger ²⁶ Phillip Bucksbaum ²⁵ John Byrd ¹⁴ Jamie Cate ³⁰ ndrea Cavalleri ⁷	l	Robert Bergman ³⁰	L
Nora Berrah ⁴¹ Jean-Yves Bigot ¹² Hendrik Bluhm ¹⁴ Mike Bogan ²⁵ Axel Brunger ²⁶ Phillip Bucksbaum ²⁵ John Byrd ¹⁴ Jamie Cate ³⁰ ndrea Cavalleri ⁷	l	Uwe Bergmann ²⁵	Н
Hendrik Bluhm ¹⁴ Mike Bogan ²⁵ Axel Brunger ²⁶ Phillip Bucksbaum ²⁵ John Byrd ¹⁴ Jamie Cate ³⁰ ndrea Cavalleri ⁷	l		T
Hendrik Bluhm ¹⁴ Mike Bogan ²⁵ Axel Brunger ²⁶ Phillip Bucksbaum ²⁵ John Byrd ¹⁴ Jamie Cate ³⁰ ndrea Cavalleri ⁷	l	Jean-Yves Bigot 12	٧
Mike Bogan ²⁵ Axel Brunger ²⁶ Phillip Bucksbaum ²⁵ John Byrd ¹⁴ Jamie Cate ³⁰ ndrea Cavalleri ⁷	l	Hendrik Bluhm ¹⁴	P
Phillip Bucksbaum ²⁵ John Byrd ¹⁴ Jamie Cate ³⁰ ndrea Cavalleri ⁷	l	Mike Bogan ²⁵	C
John Byrd ¹⁴ Jamie Cate ³⁰ ndrea Cavalleri ⁷	l	Axel Brunger ²⁶	R
Jamie Cate ³⁰	I	Phillip Bucksbaum 25	D
Jamie Cate ³⁰		John Byrd 14	P
		Jamie Cate ³⁰	J
enz Cederbaum ³⁶			S
		enz Cederbaum ³⁶	J

Andrew Charman 14 Bruce Gates³¹ in Chen² Oliver Gessner¹⁴ ulin Chen 14 Ben Gilbert 14 Mary Gilles 14 Majed Cherqui⁹ ri-De Chuang 14 Steve Gourlav¹⁴ C.I. Cocke¹³ Michael Grass¹⁴ Paul Corkum¹⁷ Chris Greene³⁵ John Corlett 14 Jinghua Guo 14 Joe Harkins 14 ania Cuk 14 Peter Denes 14 M. Zahid Hasan²⁰ Dan Dessau³⁵ Franz Himpsel²⁹ homas Devereaux²⁵ Axel Hoffmann² lim DeYoreo 14 James Holton 14 ou DiMauro 18 Malcolm Howells 14 Greg Hura 14 arry Doolittle 14 Hermann Durr²⁵ Nils Huse 14 homas Earnest 14 Zahid Hussain 14 Wolfgang Eberhardt 10 Enrique Iglesia 14 Paul Evans²⁹ Richard Jared 14 Charles Fadlev³¹ Peter Johnson⁵ Chris Jozwiak 14 Roger Falcone 14 Daniele Filippetto 14 Robert Kaindl 14 eter Fischer 14 Chi-Chang Kao²⁵ lim Floyd 14 Cheryl Kerfeld 14 Steve Fournier 14 Steve Kevan³⁹ Ionathan Frank²² Janos Kirz 14 Heinz Frei 14 Chris Kliewer²²

Alessandra Lanzara 14 Wei-sheng Lee²⁶ Dung-Hai Lee 14 Steve Leone 14 Nate Lewis⁶ Derun Li¹⁴ Mark Linne⁸ Zhi Liu¹⁴ Robert Lucht²¹ Jon Marangos 11 Todd Martinez²⁵ C.W. McCurdy 14 Joel Moore 14 Shaul Mukamel³² Keith Nelson 15 Anders Nilsson²⁵ Dan Nocera 15 Joe Orenstein 14 David Osborn²² Abbas Ourmazd²⁹ Howard Padmore 14 C. Papadopoulos 14 Chris Pappas 14 Fulvio Parmigiani²⁴ Claudio Pellegrini³³ Gregg Penn 14 Massimo Placidi 14

Soren Prestemon 14 Donald Prosnitz 14 R. Ramesh 14 Theo Rasing²⁸ Alex Ratti¹⁴ Kenneth Raymond³⁰ Doug Rees⁶ Matthias Reinsch 14 Eli Rotenberg 14 Sujoy Roy 14 Dilano Saldin²⁹ Annette Salmeen 14 Miguel Salmeron 14 Fernando Sannibale 14 Robin Santra7 Ross Schlueter 14 Robert Schoenlein 14 Andreas Scholl 14 Andrew Sessler 14 Zhi-Xun Shen²⁵ Oleg Shpyrko³⁴ Volker Sick³⁸ Steve Singer¹⁴ Gabor Somoriai³⁰ John Spence³ John Staples 14 Jo Stohr²⁵

Albert Stolow 17 Craig Taatjes²² John Tainer 14 Lou Terminello 19 Neil Thomson²³ Joachim Ullrich 16 Marco Venturini 14 Angela Violi³⁸ Marc Vrakking¹ Hai Wang⁴⁰ Glenn Waychunas 14 Russell Wells 14 Russell Wilcox 14 Kevin Wilson¹⁴ L. Andrew Wray 14 Jonathan Wurtele 14 Wilfred Wurth²⁷ Vittal Yachandra 14 Peidong Yang³⁰ Junko Yano 14 Linda Young² A.A. Zholents² Shuyun Zhou 14 Max Zolotorev 14 Peter Zwart 14

²Argonne National Laboratory

³Arizona State University

y Chapman'

⁴ARTIUM Tech

⁵Brookhaven National Laboratory

⁶California Institute of Technology

7CFEL DESY

⁸Chalmers University

9_{EPF Lausanne}

10 Helmholtz-Zentrum Berlin

¹¹Imperial College London

12 IPCM, Strasbourg

13 Kansas State University

¹⁴Lawrence Berkeley National Laboratory

¹⁵Massachusetts Institute of Technology

¹⁶Max-Planck-Institut für Kernphysik

17 National Research Council of Canada

18 Ohio State University,

¹⁹Pacific Northwest National Laboratory

²⁰Princeton University.

²¹Purdue University, ²²Sandia National Laboratories,

²³Science and Technology Facilities Council, UK

²⁴Sinchrotrone Trieste

²⁵SLAC National Accelerator Laboratory

²⁶Stanford University

²⁷University of Hamburg

²⁸University of Radboud

²⁹University of Wisconsin

30 University of California, Berkeley

31 University of California, Davis

32 University of California, Irvine

33 University of California, Los Angeles

34University of California, San Diego

35 University of Colorado

36 University of Heidelberg

³⁷University of Illinois

38University of Michigan

39University of Oregon

⁴⁰University of Southern California

⁴¹Western Michigan University

NGLS project status

- LBNL submitted a CD-0 proposal in December 2010
- DOE approved "Mission Need" for the Next Generation Light Source
- Currently no DOE budget to pursue a Project
- LBNL is
 - Fully committed to NGLS
 - Performing Accelerator and Detector R&D
 - Performing feasibility studies which will inform a Conceptual Design

The Deputy Secretary of Energy

Washington, DC 20585

April 5, 2011

MEMORANDUM FOR WILLIAM F. BRINKMAN

DIRECTOR

OFFICE OF SCIENCE

FROM: DANIEL B. PONEMA

SUBJECT: Approval of Critical Decision-0 for the Next Generation Light

Source

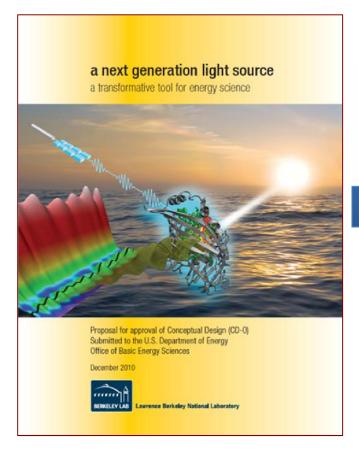
In accordance with Department of Energy Order 413.3B, Program and Project
Management for the Acquisition of Capital Assets, the Next Generation Light Source
project has met Critical Decision (CD)-0 (Approve Mission Need) requirements. As the
Secretarial Acquisition Executive, based on the recommendation of the Energy Systems
Acquisition Advisory Board, I approve CD-0. The rough order of magnitude cost range
is \$0.9 billion to \$1.5 billion.

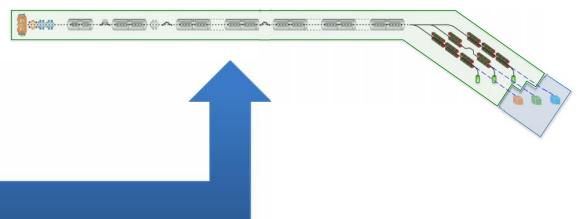
Please continue to work with the Office of Engineering and Construction Management as you progress to Critical Decision-1 (Alternative Selection and Cost Range).

CC

Steven E. Koonin, S-4 Ingrid Kolb, MA-1 Paul Bosco, MA-50 Sean Lev GC-1

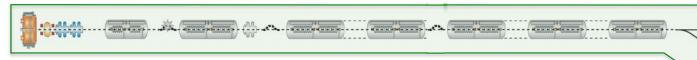
Associate Director, Office of Basic Energy Sciences, SC-22


Director, Office of Project Assessment, SC-28

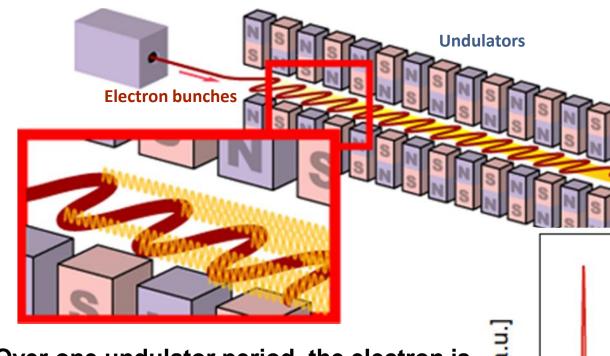


Science requirements drive machine design

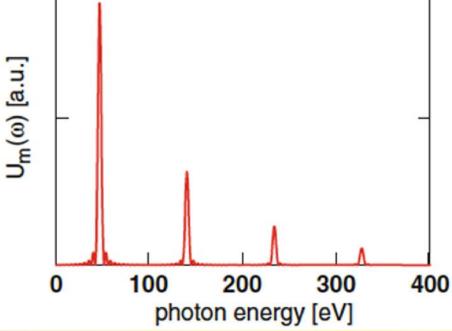
- Tuning range
- Maximum photon energy
- Peak flux
- Average Flux
- Repetition rate
- Two-color capability


- Pulse duration
- Bandwidth
- Accuracy
- Stability
- Synchronization
- Contrast ratio

Work in progress to better define the machine layout


- Injector
 - Bunch compression, emittance compensation, acceleration
- Linac and spreader
 - Bunch compression
 - Diagnostics
 - Cryomodules, accelerating gradient, cavity quality factor, field emission, higher-order-mode power
 - Collimation
 - Kicker and septum magnets, spreader transport lattice
- FEL design
 - Undulators
 - Seeding
- Beam dumps

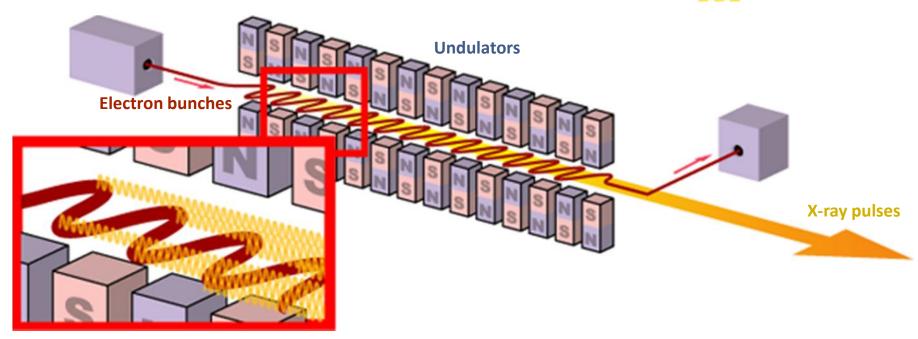
Undulator radiation

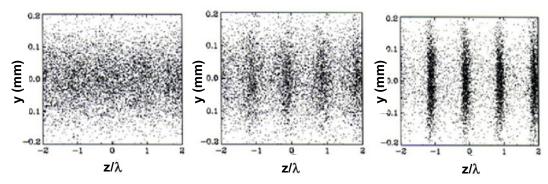


Over one undulator period, the electron is delayed with respect to the light by one optical wavelength

$$I_{x-ray} = \frac{I_{undulator}}{2g^2} \stackrel{\text{at}}{\underset{\text{e}}{\text{c}}} + \frac{K^{2\ddot{0}}}{2} \stackrel{\text{d}}{\underset{\text{e}}{\text{c}}}$$

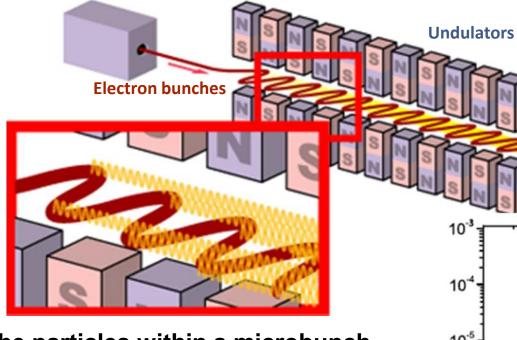
$$K = \frac{eB_0 I_{undulator}}{2 \rho mc}$$



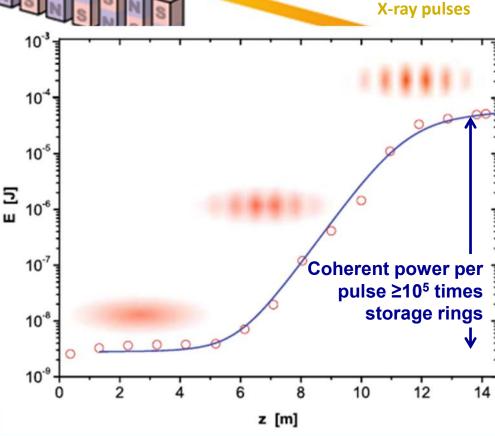

X-ray pulses

FEL bunching

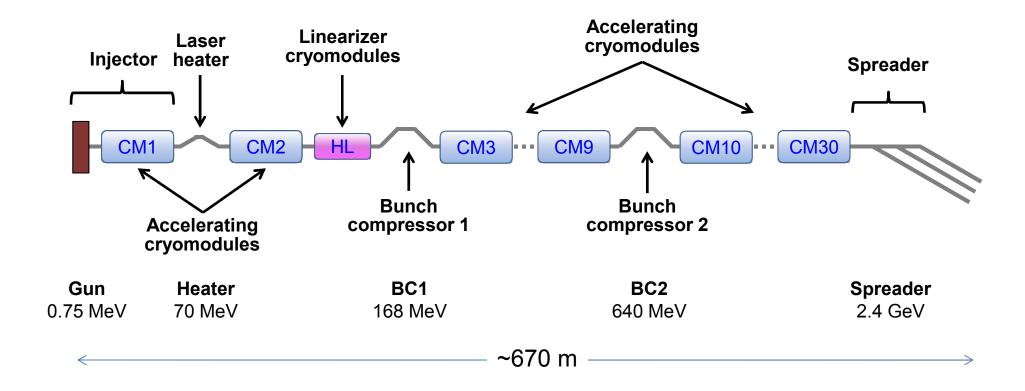
Microbunching: electrons losing energy to light travel a longer distance than electrons gaining energy from the light



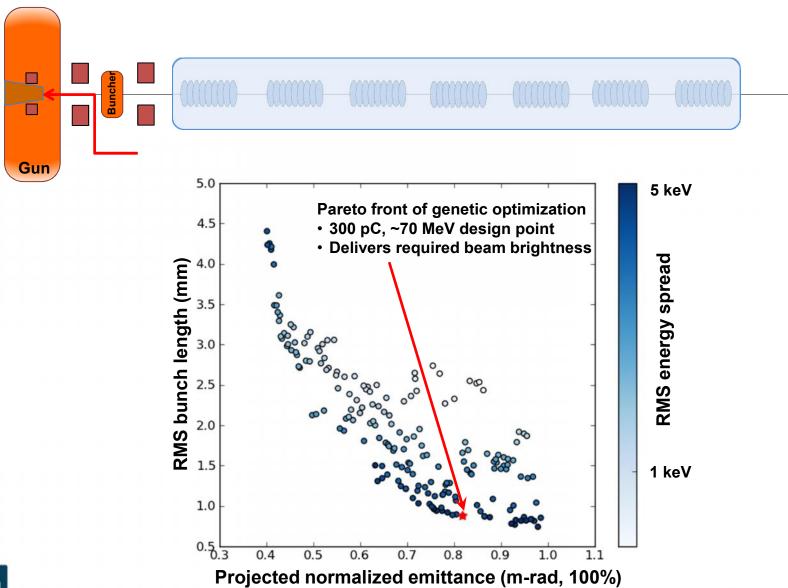
FEL gain



The particles within a microbunch radiate like a single particle of high charge

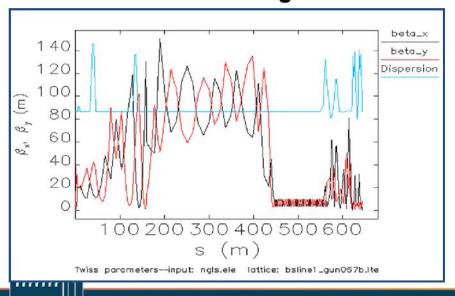

The resulting strong radiation field enhances the microbunching even further and leads to an exponential growth of the radiation power

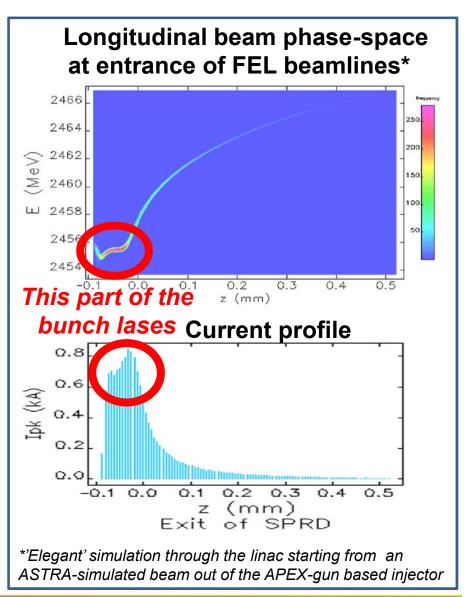
Linac schematic layout



Injector multivariate optimization

Beam dynamics modeling through


Jinac stage compression


2.4 GeV

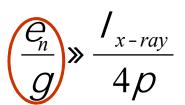
BERKELEY LAB

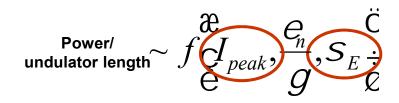
- APEX-gun generated beams (300pC)
- 2 600 A peak current and small residual energy chirp within usable beam core
- limited CSR-induced projected emittance growth

Twiss functions through the Linac

Physics & technology challenges

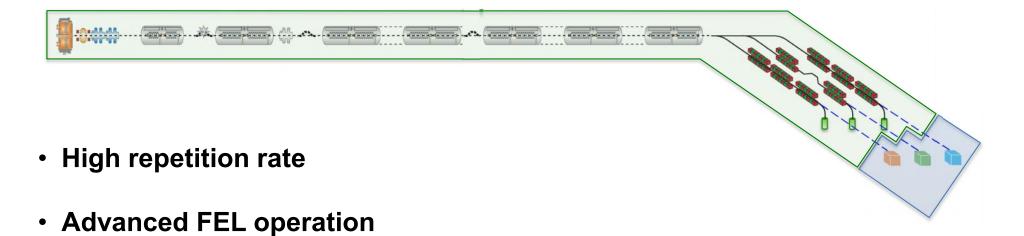
electron bunch


≲100 µm


100 μm ~100 m

~1 nm

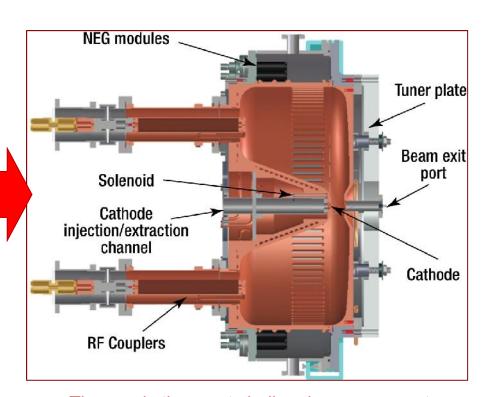
- Small electron beam emittance ε
- Longitudinal phase space
 - Large peak current I_{peak}
 - Small energy spread σ_{E}
- Electron beam energy γ
 - High gradient accelerator
- Short period undulators
- Collective effects
- Average power
 - High repetition rate injector
 - CW superconducting accelerator
- X-ray temporal control
 - FEL design & seeding techniques



$$I_{x-ray} = \underbrace{\frac{I_{undulator}}{2g^2}}_{\text{undulator}} \underbrace{\frac{\mathcal{E}}{\mathcal{E}}}_{\text{e}} + \frac{K^2 \dot{\mathcal{E}}}{2 \dot{\mathcal{E}}}$$

Accelerator Systems R&D

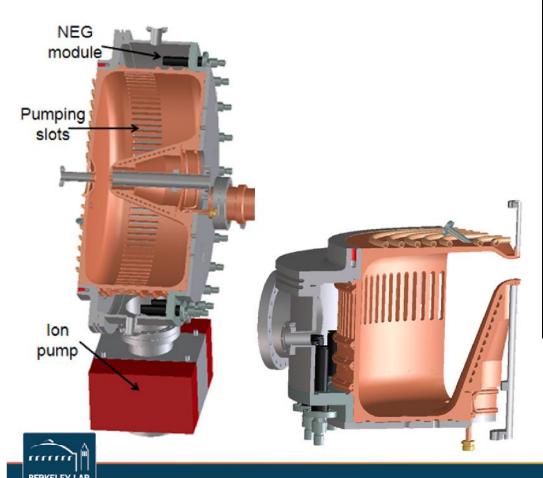
- High average power
- Superconducting accelerator developments



Injector design goals – APEX gun

- Repetition rate 1 MHz
- Charge per bunch from ~10 pC to ~1 nC
- Emittance <10⁻⁶ mm-mrad (normalized)
- Electric field at the cathode ≥~10 MV/m (space charge emission limit)
- Beam energy at the gun exit ≥~500 keV (space charge control)
- Bunch length ~100 fs to ~10 ps for handling space charge effects, and for allowing different modes of operation
- Compatible with magnetic field control within the gun (emittance exchange and compensation)
- 10⁻¹¹ Torr vacuum capability (cathode lifetime)
- Accommodates a variety of cathode materials
- High reliability for user operations

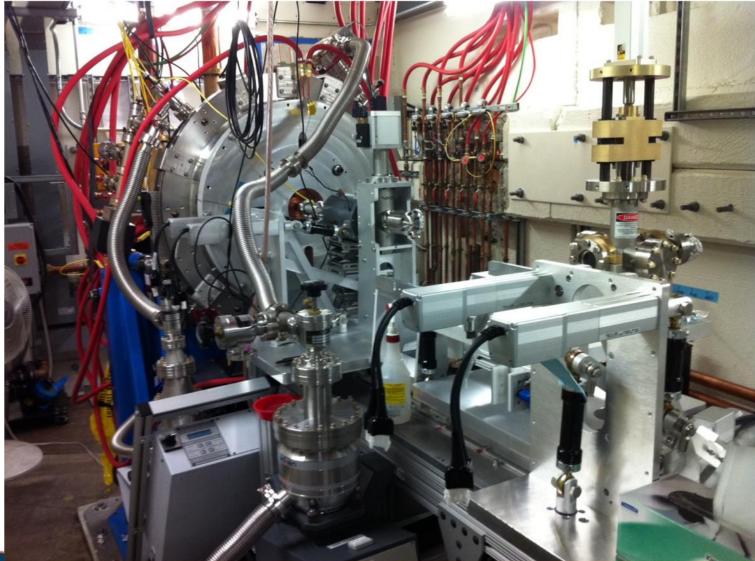
The gun is the most challenging component LBNL approach uses a CW VHF cavity



NGLS next generation light source

VHF cavity operates in CW mode

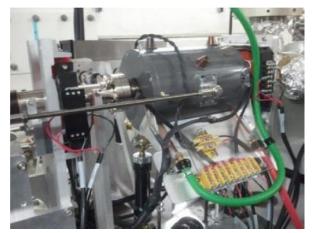
- Low power density on cavity walls
- High conductance vacuum slots
- High gradient at cathode

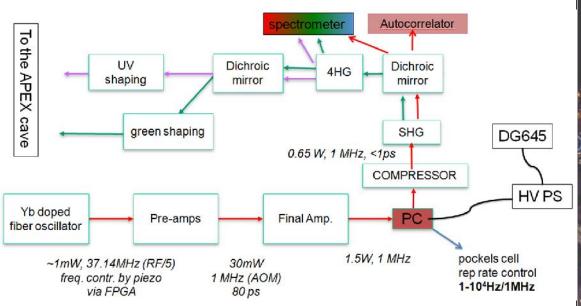

Frequency	187 MHz
Operation mode	CW
Gap voltage	750 kV
Field at the cathode	19 MV/m
Q_0	30887
Shunt impedance	$6.5\mathrm{M}\Omega$
RF Power	90 kW
Stored energy	2.3 J
Peak surface field	24 MV/m
Peak wall power density	25 W/cm ²
Accelerating gap	4 cm
Diameter/Length	70/35 cm
Operating pressure	< 10 ⁻¹¹ Torr

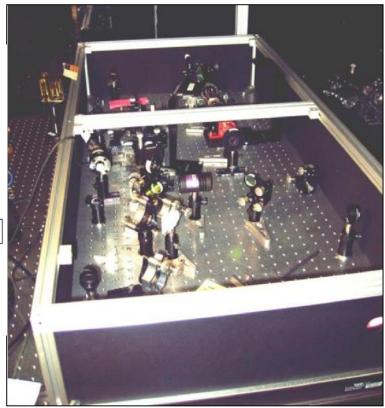
APEX gun in test area

• APEX cavity is successfully RF conditioned

APEX in the Beam Test Facility



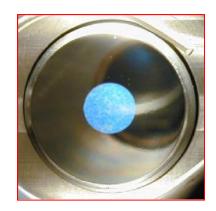




Yb fiber photocathode drive laser

- 1 MHz reprate Yb fiber laser
 - LLNL/UCB/LBNL collaboration

Photocathode materials

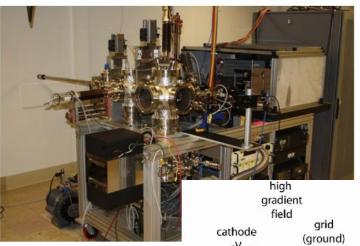


Alkali Antimonides eg. K₂CsSb

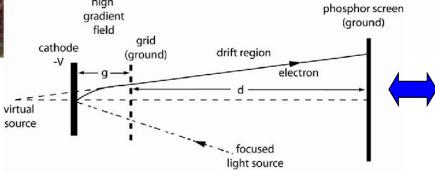
- Fast
- Reactive; requires UHV ~10⁻¹⁰ Torr pressure
- High QE (typically >5%)
- No pulse charge saturation
- Requires green light (532 nm, 2nd harm. conversion from IR)
- For 1 nC & 1 MHz rep-rate, ~ 1 W IR required
- Unproven lifetime at high rep-rate and high average current

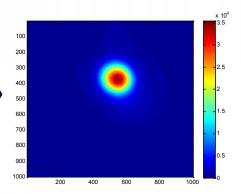
Cs₂Te (developed by INFN/LASA and delivered to LBNL)

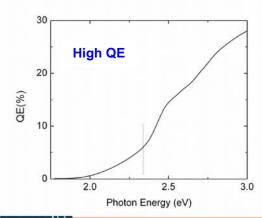
- Fast
- Relatively robust and un-reactive (~10⁻⁹ Torr)
 - Demonstrated in a high gradient rf gun
- High QE (typically >5%)
- No pulse charge saturation
- Requires UV 250 nm, 3rd or 4th harm. from IR laser)
- For 1 nC 1 MHz reprate, ~ 10 W IR required
- Unproven at high rep-rate and high average current

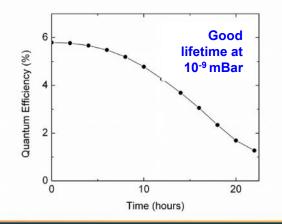


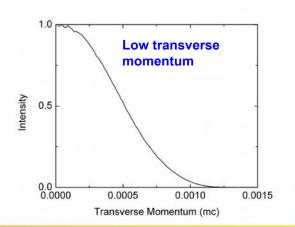
The APEX gun will also be used to test the BNL diamond amplifier cathode


Photocathode materials R&D






K₂CsSb:


6% QE at 532 nm 0.36 microns / mm rms $\bar{\epsilon}_n$ >> 1 week lifetime

APEX stages

Beam characterization at 15–30 MeV

6-D brightness measurements!

Phase I: ¦

Beam in characterization at gun energy in (750 keV)

Phase 0: ¦

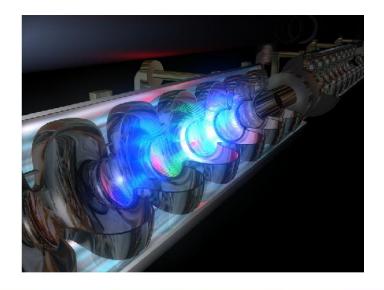
Gun and I photocathode tests!

Diagnostics systems in collaboration with Cornell CLASSSE

Accelerating cavities in collaboration with ANL AWA

Planning for final installation in 2013

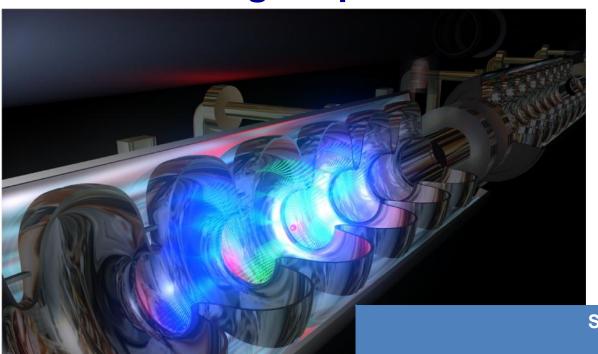
Accelerating structures


Normal conducting

- High power dissipation in structure walls
 - Operate in pulsed mode for highest gradient
 - E.g. 120 Hz SLAC linac (2.9 GHz)
 - ~ 20 MVm⁻¹

Superconducting

- Capability to operate CW at high gradient
 - Options for beam recirculation and energy recovery
 - 20 MVm⁻¹ a goal for CW operations
 - CEBAF 12 GeV upgrade

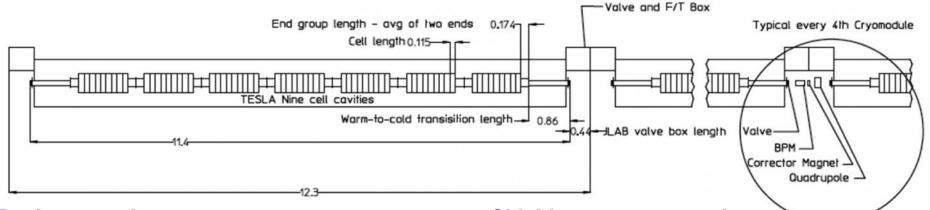


A superconducting accelerator is efficient for high repetition-rate beam

$$R_S = \frac{A}{T}f^2e^{-\frac{D(T)}{kT}} + R_0$$

	Superconducting	Normal conducting
Q_{o}	2x10 ⁹	2x10 ⁴
Power loss (W/m) [@ 1 MV/m, 500 MHz]	1.5	56,000
Wall-plug power (kW/m) [@ 1 MV/m, 500 MHz]	0.54	112

Power requirement reduced by ~200


SCRF cryomodules are mature technology

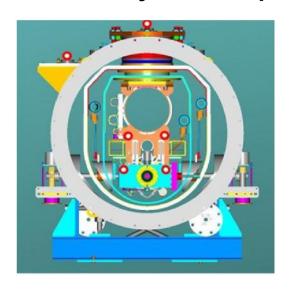
NGLS cryomodule concept

- Current cryomodule concept uses "TESLA" cavities in JLAB-style housing
 - Cold/warm transitions on each cryomodule
 - Distribute 5 K liquid, cool to 1.8 K at cryomodule
 - Warm magnets & diagnostics

Design questions

- Operating gradient increased to ~16 MV/m
- $Q_0 \ge 2x10^{10}$
- HOM power dissipation and absorption
- Field emission
- Number of cavities within a single module

- Shield temperature and arrangement
- Power coupler design
- Tuner type and access
- Selection and sizing of cryogenic circuits
- Minimization of acoustic noise
- Warm to cold transitions



Cryomodules (harmonic cavities)

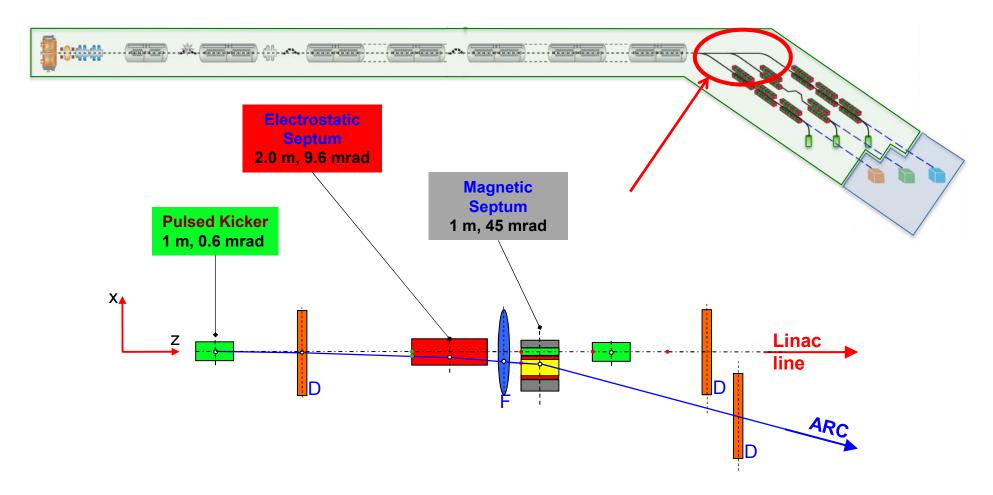
NGLS next generation light source

- Fermilab cryomodules installed at FLASH
 - Modify for CW operation?

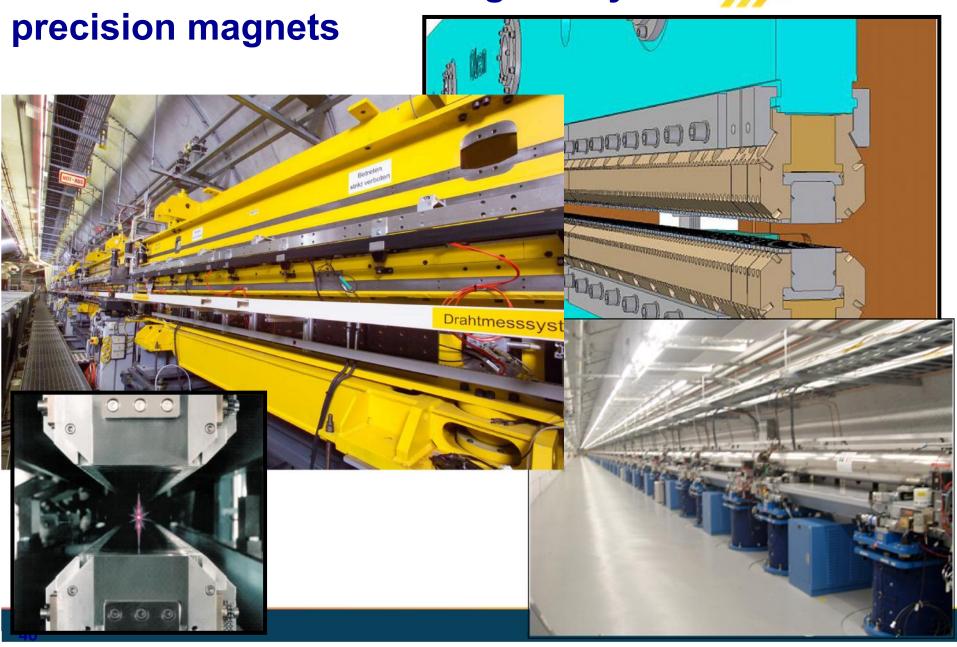
TM₀₁₀ Cavity

- Regular cells -30mm iris diameter
- End-cells iris from the tube side increased up to 40mm for better coupling with the power coupler
- Two HOM couplers are mounted in both ends
- Ports for power coupler and pick-up antenna
- 2.8 mm bulk niobium

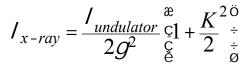
Parameter List for 3.9 GHz cavity:

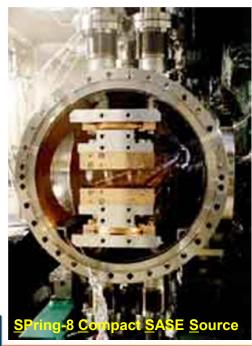

A CONTRACTOR OF THE PROPERTY O	
Number of cavities	4
Active Length	0.346 m
Gradient	14 MV/m
Phase	-179 deg
R/Q	375 Ω
E _{peak} / E _{acc}	2.26
B _{peak} (E _{acc} =14 MV/m)	68 mT
Qext	9.5·10 ⁵
BBU threshold, Q	<1.e+5
Total energy	20 MeV
Beam current	9 mA
Forward Power	11.5 kW
Power in Coupler	45 kW

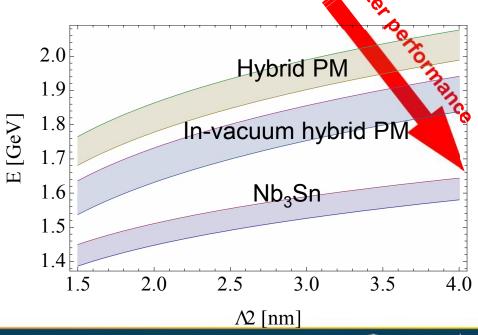
Optimizing the beam spreader



- Electrostatic septum allows 5x weaker kickers (1/5 stability tolerance)
- Footprint reduced ~1/3

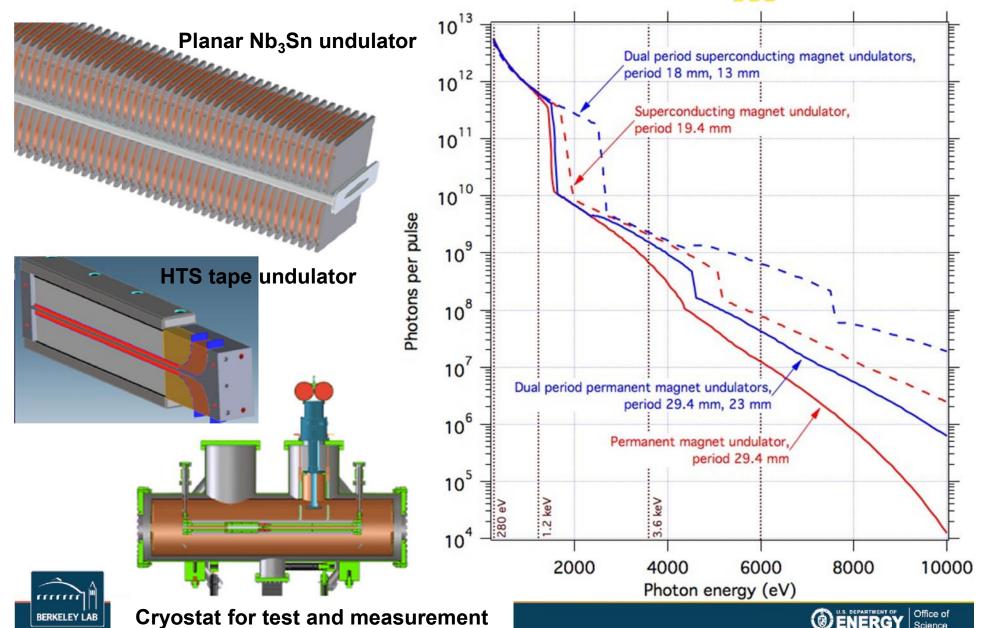

The FEL undulators are large arrays of

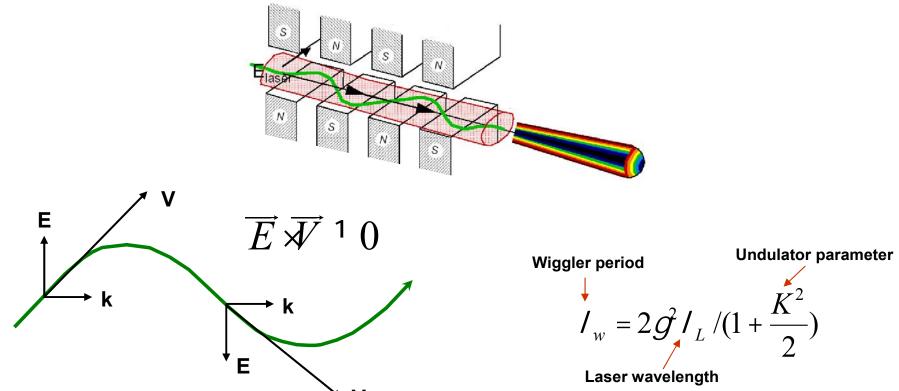

Undulator technology



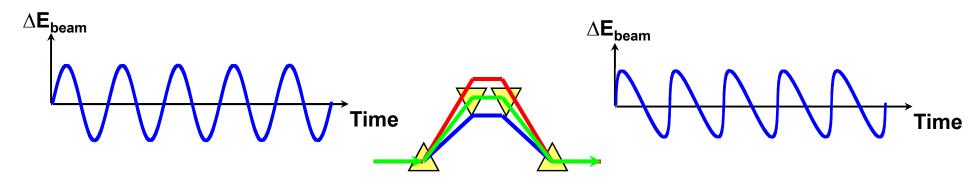
- Currently undulator technology limits period 15 mm
- Requires beam energy ~2 GeV to radiate at 1 nm
- Superconducting devices could provide significant performance improvements
 - R&D projects under way to develop short-period undulators using Nb₃Sn

$$K = \frac{eB_0 I_{undulator}}{2\rho mc}$$



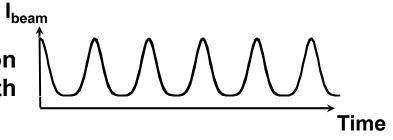

Superconducting undulator R&D

Seeded FELs - 1



- Electron beam couples to E-field of laser when co-propagating in an undulator
- Over one undulator period, the electron is delayed with respect to the light by one optical wavelength

Seeded FELs - 2

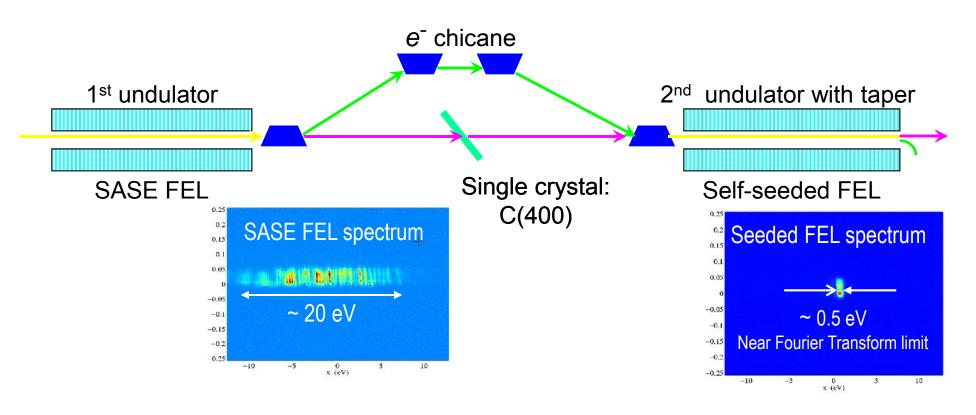


Energy-dependent path length

$$Dz = R_{56} \frac{DE}{E}$$

Induced current modulation in the electron beam

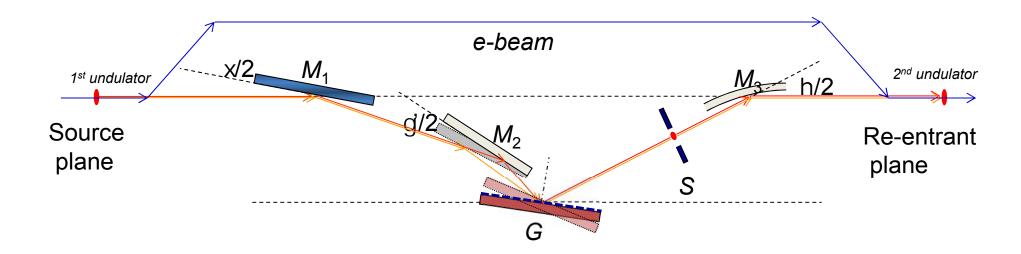
Harmonic content in the beam allows for radiation at a harmonic of the modulating wavelength



Self-seeded FELs

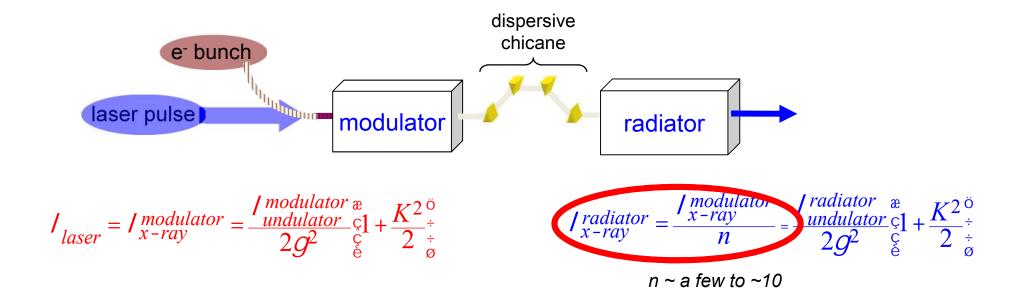
LCLS Hard X-ray Self Seeding – demonstrated at 1.5 Å

Initial results: 40x reduction in BW (40x increase in peak brightness)

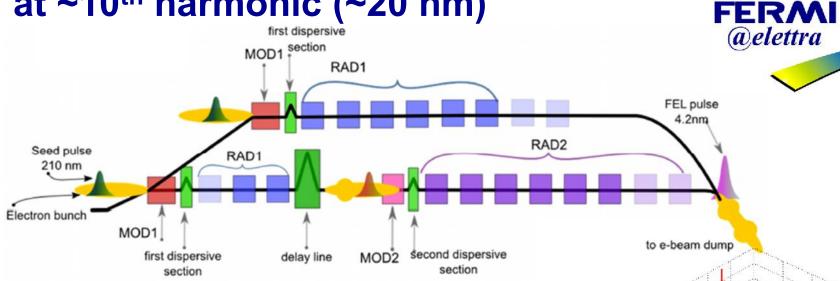


Self-seeded FELs

LCLS Soft X-ray Self Seeding – in planning stages



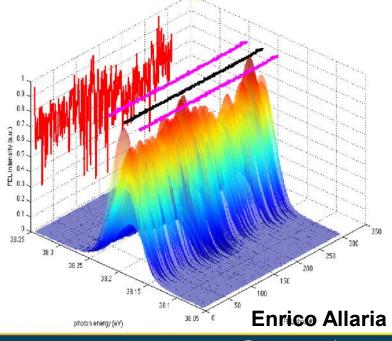
High-gain harmonic generation (HGHG)



L.-H. Yu et al, Science 289 932-934 (2000)

FERMI@elettra demonstrates HGHG at ~10th harmonic (~20 nm)

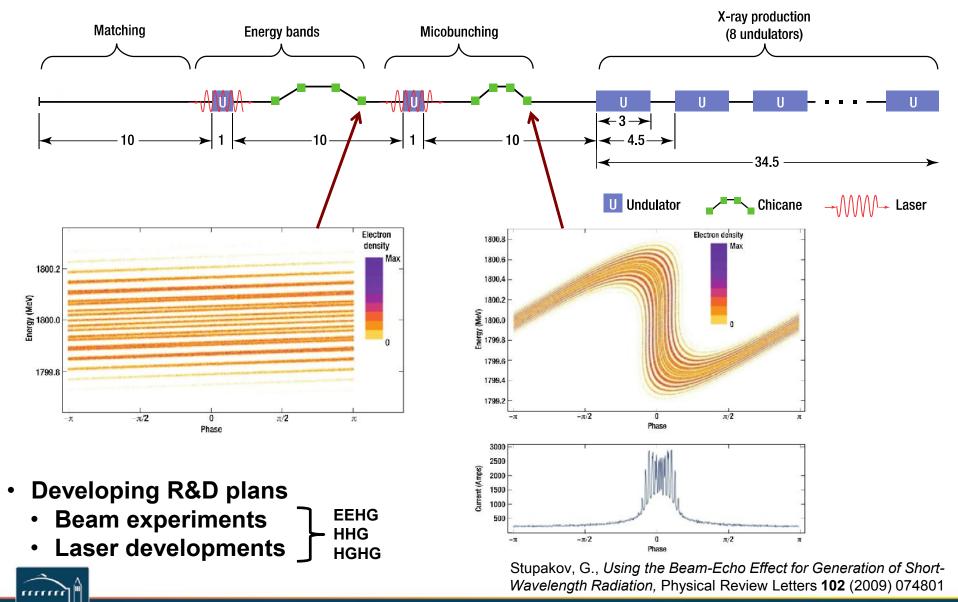
- ➤ UV laser seed (~200 nm)
- > FEL gain at 20 nm
- > 4 nm FEL cascade under construction


FEL photon energy ~ 38 eV

Photon energy fluctuations = 1.1 meV (RMS)

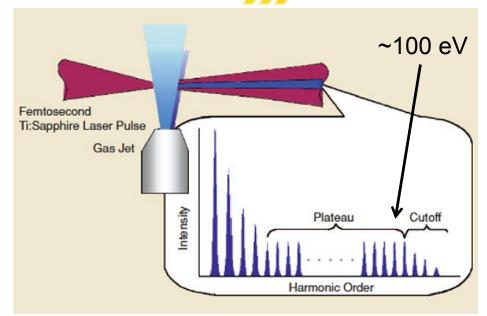
FEL bandwidth = $5.9e^{-4}$ (RMS)

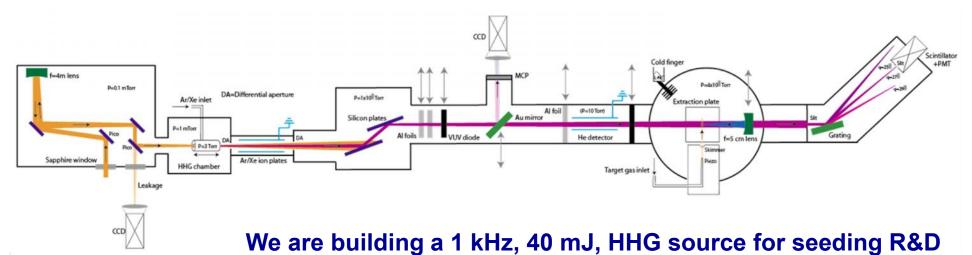
FEL bandwidth fluctuations = 3% (RMS)



Laser seeded FELs – ECHO

BERKELEY LAB

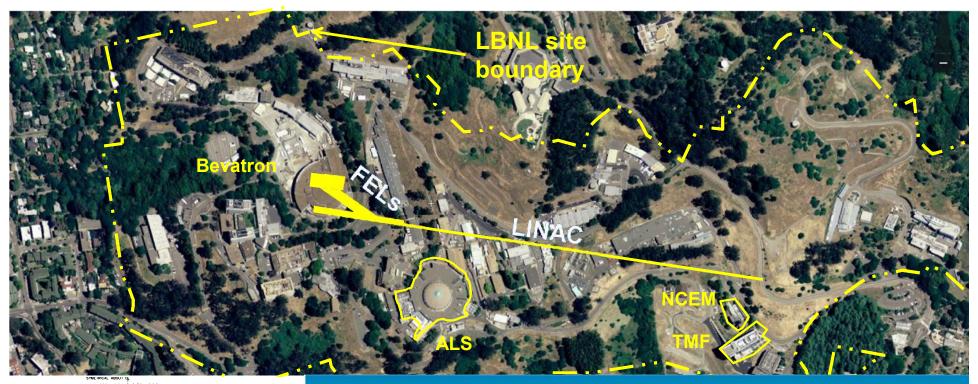


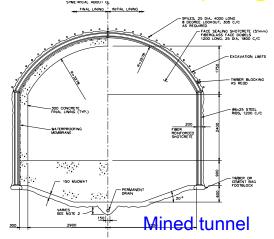


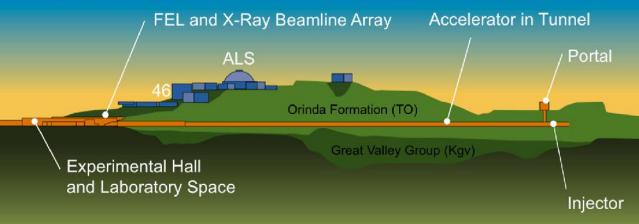
HHG seeded FEL R&D

NGLS next generation light source

- HHG seeding at 50 100 eV
- HHG seeding demonstrated at 61.5 nm (SCSS)
- Harmonic generation in FEL to reach 1 nm

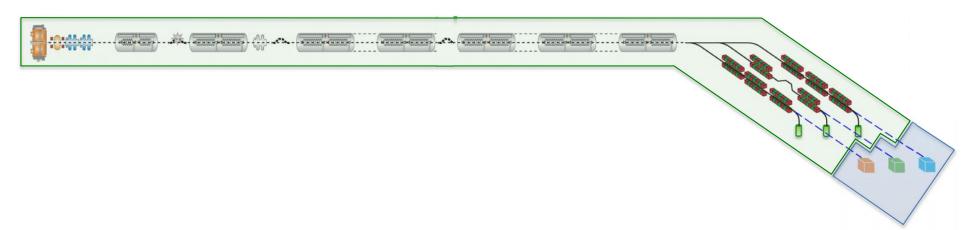






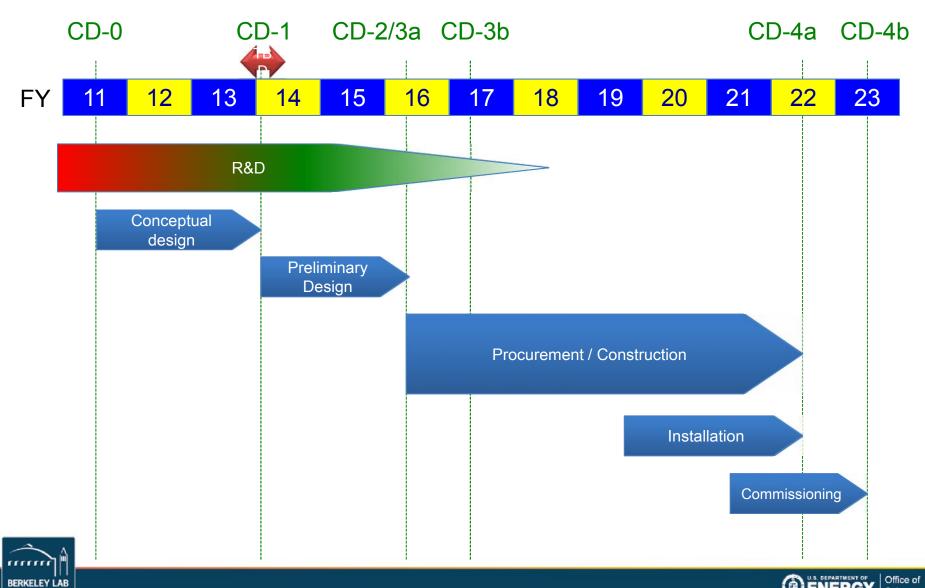
NGLS at the LBNL site

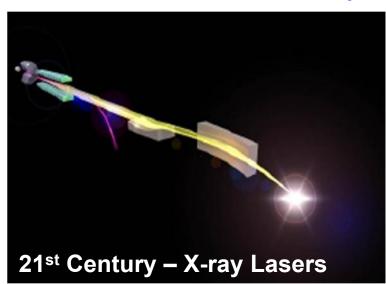
Summary


- DOE has approved Mission Need for a Next Generation Light Source
 - LBNL led the effort
 - · We are:
 - Developing science case and experimental requirements
 - Optimizing machine design to best meet science needs
 - Executing and developing R&D plans
 - Strengthening and building collaborations
 - Seeking partnership with FNAL
 - Expertise in SCRF and cryosystems

NGLS DESIGN STUDY AND ACCELERATOR R&D TEAM

- B. Austin, K.M. Baptiste, D. Bowring, J.M. Byrd, J.N. Corlett, P. Denes,
- S. DeSantis, R. Donahue, L. Doolittle, P. Emma, D. Filippetto, J. Floyd,
- J. Harkins, G. Huang, T. Koettig, S. Kwiatkowski, D. Li, H. Nishimura,
- T.P. Lou, H.A. Padmore, C. Papadopoulos, C. Pappas, G. Penn, M. Placidi,
- S. Prestemon, D. Prosnitz, J. Qiang, A. Ratti, M. Reinsch, D.S. Robin,
- F. Sannibale, R. Schlueter, R.W. Schoenlein, A. Sessler, J.W. Staples,
- C. Steier, C. Sun, T. Vecchione, M. Venturini, W. Wan, R. Wells, R. Wilcox,
- J. Wurtele


Backup slides


Summary schedule (for planning purposes)

New era in X-ray Science: Nobel Prizes for X-rays and lasers portend the future scientific impact of true X-ray lasers

Nobel Prizes – Laser Related

1964: Townes, Basov, Prokhorov

1971: Gabor

1981: Bloembergen, Schawlow

1997: Cohen-Tannoudji, Chu, Phillips

1999: Zewail

2000: Alferov, Kroemer

2001: Cornell, Ketterle, Wieman

2005: Hansch, Hall

Nobel Prizes – X-ray Related

1901: Röntgen

1914: von Laue

1915: Bragg, Bragg

1917: Barkla

1924: Siegbahn

1927: Compton

1936: Debye

1962: Perutz, Kendrew

1962: Crick, Watson, Wilkins

1964: Hodgkin

1976: Lipscomb

1979: Cormack, Hounsfield

1981: Siegbahn

1985: Hauptman, Karle

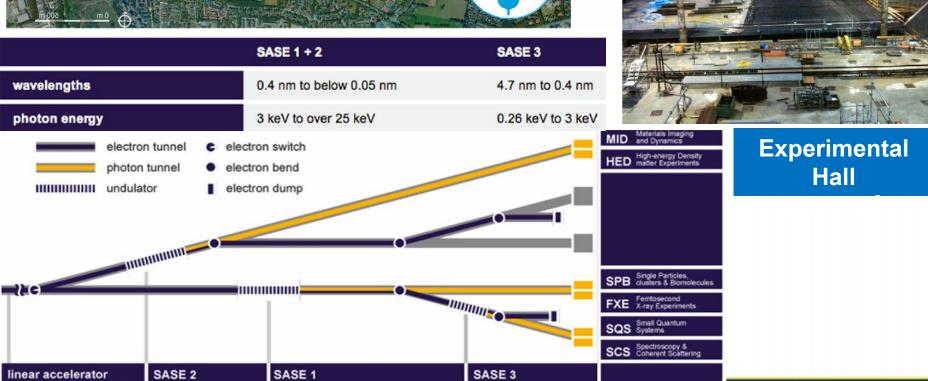
1988: Deisenhofer, Huber, Michel

1997: Boyer, Walker

2006: Kornberg

2009: Ramakrishnan, Steitz, Yonath

X-ray lasers and X-ray science are developing rapidly



BERKELEY LAB

Superconducting linac

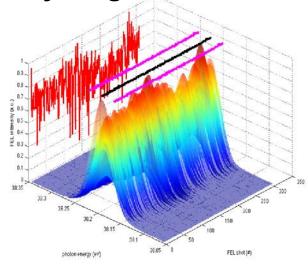
NGLS

- 30 kHz (burst mode)
- Soft and hard X-rays
- Operational in 2015

X-ray lasers and X-ray science are developing rapidly

World's first seeded X-ray FEL – tunable in soft x-ray range

- UV laser seed (200 nm)
- FEL gain at 20 nm
- > 1 nm FEL under
 - construction

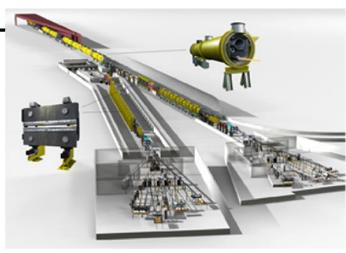

FEL photon energy ~ 38 eV

Photon energy fluctuations = 1.1 meV (RMS)

FEL bandwidth = $5.9e^{-4}$ (RMS)

FEL bandwidth fluctuations = 3% (RMS)

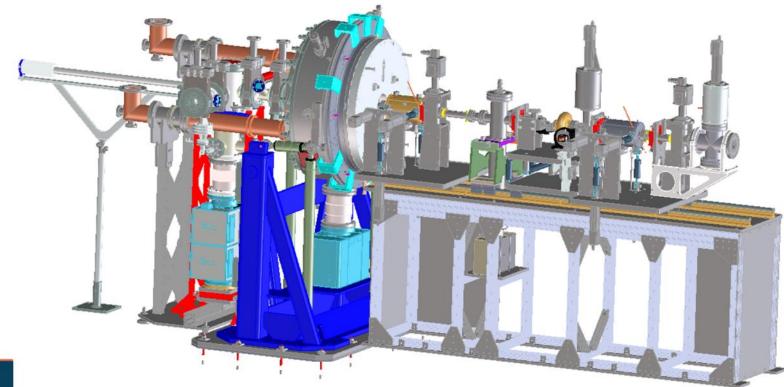
Upgrade of FLASH – World's first X-ray FEL


Superconducting

- Potential for CW operation)

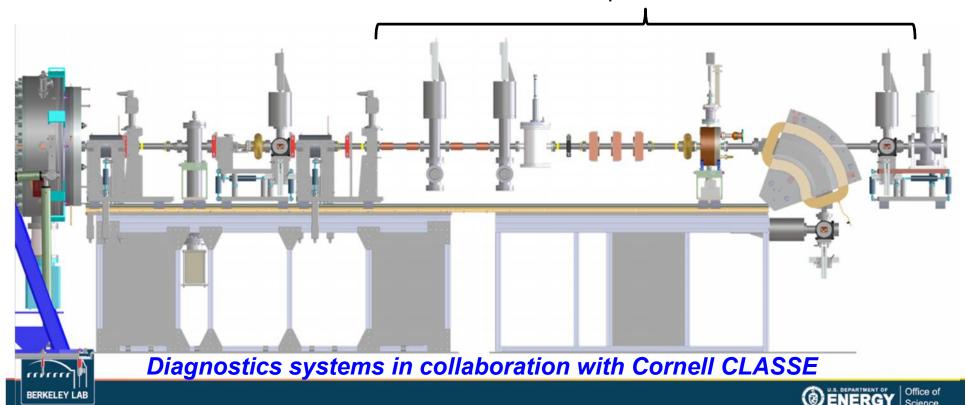
FLASH-II

- Tunable (adjustable undulators)
- **GERMANY** Seeded (coherent)



APEX Phase 0

- Demonstration of gun RF performance
- Demonstration of vacuum performance with RF power
- Dark current characterization
- Cathode physics (lifetime, QE, intrinsic emittance) at full repetition rate

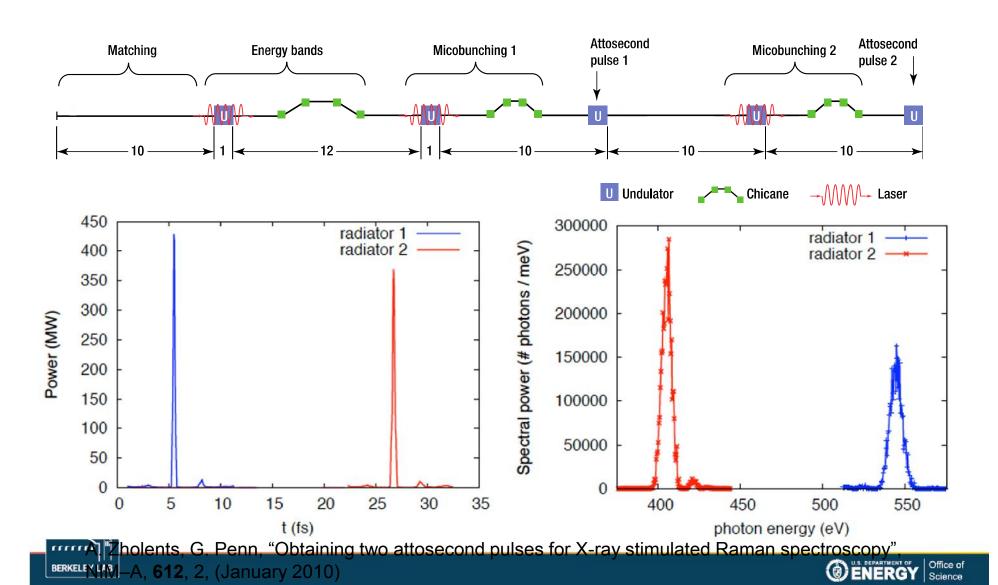

Office of Science

APEX Phase I adds diagnostics

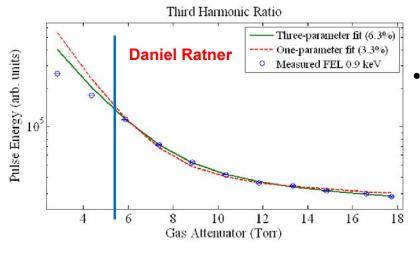
- Beam dynamics (6-D measurements)
- Diagnostics tests
- Low energy beam characterization
- Planned for spring 2012

- Quadrupole triplet
- X-Y corrector
- Retractable slits
- Deflecting cavity
- YAG screens
- Spectrometer

Technical developments since CD-0

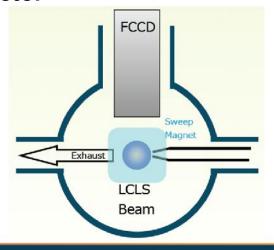

- Increased tuning range (1.0 4.6 nm)
- Increased beam current (600 A)
- Larger energy spread (100 keV)
- Larger vacuum aperture in undulators (6 mm)
- Longer period undulators (29.4 mm)
- Increased minimum undulator K (1)
- Out-of-vacuum undulators
- Increased average β-function in FEL (15 m)
- Higher beam energy (2.4 GeV)
- Second bunch compressor
- Redesign of spreader including electrostatic septum

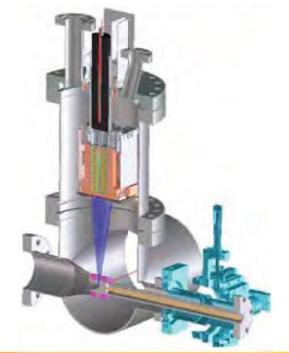
NGLS next generation light source


ECHO seeded 2-color attosecond

FEL harmonics measurements at LCLS

Now using filters





Fit to detected signal level with attenuators

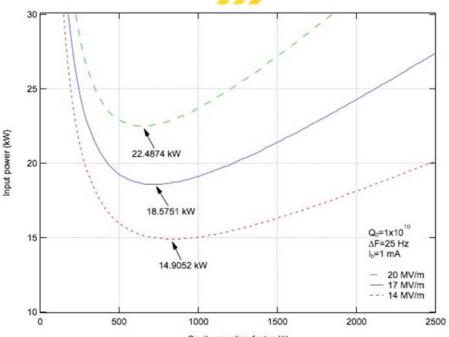
$$I \gg I_0 \left(f_1 e^{-I_1 P_1} + f_3 e^{-I_3 P_3} + f_5 e^{-I_5 P_5} + \dots \right)$$

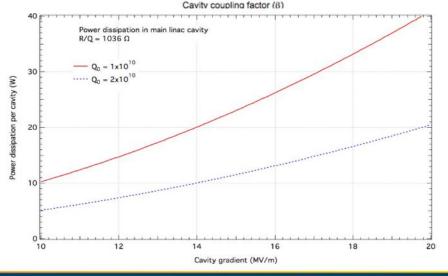
- Future using spectroscopic fast CCD detector
 - LBNL detector

Instrumentation and diagnostics R&D

- Motivation
 - Diagnostics to optimize performance, control and feedback systems to stabilize beam
- High-resolution for high-brightness beams
- Large dynamic range for flexible operating modes
- Non-intercepting for high beam power
- High repetition rate
- X-ray beam and electron beam systems
 - Beam position monitors
 - Transverse profile monitors
 - Longitudinal profile monitors
 - Beam energy measurements
 - Beam arrival time monitors
 - Current monitors using toroids
 - Beam loss monitors

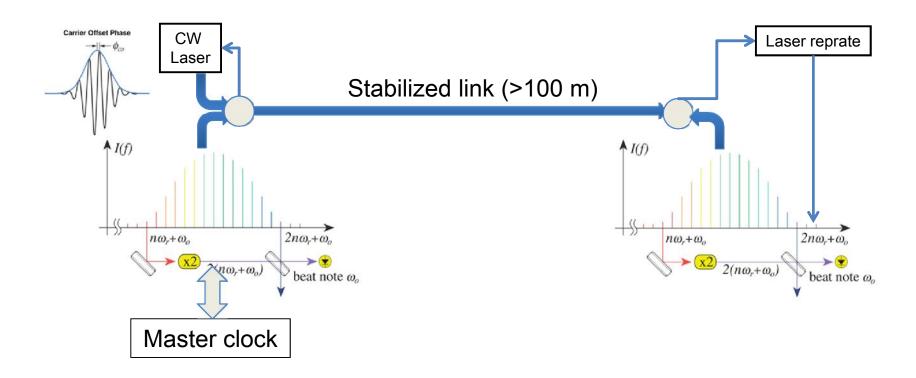
SCRF linac power requirements (CD-0)


$$P_{Input} = \frac{P_{Cavity}}{4\beta} \left[\left(1 + \beta + \frac{P_{Beam}}{P_{Cavity}} \right)^{2} + \left(2Q_{o} \frac{\Delta f}{F_{RF}} \right)^{2} \right]$$

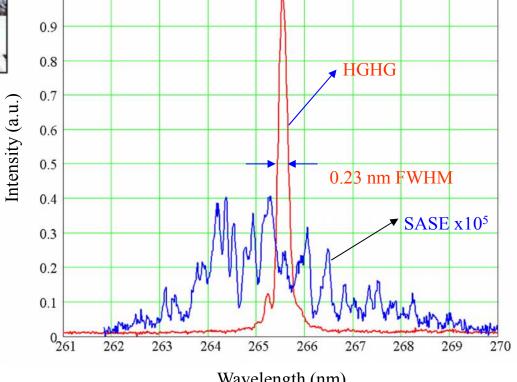

$$P_{Cavity} = \frac{V_{Cavity}^{2}}{Q_{o} \frac{R}{Q}} \qquad P_{Beam} = I_{Beam} V_{Cavity} \cos(y_{Beam})$$

RF frequency 1.3 GHz Cavity tuning excursion ± 25 Hz y_{Beam} <15° R/Q 1036 Ω Cavity length 1.038 m Q_o 1x10¹⁰ I_{beam} 1 mA

- 7 cavities per cryomodule ≈ 140 kW per linac cryomodule
- 27 cryomodules
- 3.8 MW RF power capacity
- Dominated by beam power requirement



Timing & synchronization R&D



HGHG demonstrated at Brookhaven SDL

- · Spectrum of HGHG and unsaturated SASE at 266 nm under the same electron beam condition
 - Note SASE at saturation would still be order of magnitude lower intensity

